If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5w^2-55w-30=0
a = 5; b = -55; c = -30;
Δ = b2-4ac
Δ = -552-4·5·(-30)
Δ = 3625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3625}=\sqrt{25*145}=\sqrt{25}*\sqrt{145}=5\sqrt{145}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-55)-5\sqrt{145}}{2*5}=\frac{55-5\sqrt{145}}{10} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-55)+5\sqrt{145}}{2*5}=\frac{55+5\sqrt{145}}{10} $
| 3x-5(x-5)=-5+4x-4 | | 4=3v−5 | | -38-8b=6(1-5b) | | 3x-39+2x+10=180 | | x^-2=16/9 | | 15+2x=5+3 | | -19q=-14-17q | | 14w=40+6w | | t+18-1t=3(2t-2) | | 1/2(6n+4)=3n+3 | | (2/3)x+5=11 | | 16=3v-7 | | 34-4k=-3(6k-2) | | ((88+x)/2)=90 | | 3u-1=13 | | 3d-2=22 | | -4(1+7n)-5=20+n | | k/4-9=11 | | 28=5u-3 | | -3(h+17)=0 | | 0x+9=4x+2 | | -18+2x=-2(-8x-5) | | X+5=o | | 4x+6x-2x+11-2=12x+2x-x+3 | | 2x-5x-9=-3x+5-9 | | 4=c-10/2 | | -2=-10+2j | | 27=a/29 | | 27=-a/29 | | 10x=2(6x-4) | | 5x+(4x+7)+(3x+79)=180 | | 10x=6x-4(2) |